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White papers background 7 
 8 

Each white paper has been prepared in a matter of a few weeks by a small set of experts who were 9 
pre-defined by the International Organising Committee to represent a broad range of expert 10 
backgrounds and perspectives.  We are very grateful to these authors for giving their time so 11 
willingly to this task at such short notice. They are not intended to constitute publication quality 12 
pieces – a process that would naturally take somewhat longer to achieve. 13 
 14 
The white papers have been written to raise the big ticket items that require further consideration 15 
for the successful implementation of a holistic project that encompasses all aspects from data 16 
recovery through analysis and delivery to end users.  They provide a framework for undertaking the 17 
breakout and plenary discussions at the workshop.  The IOC felt strongly that starting from a blank 18 
sheet of paper would not be conducive to agreement in a relatively short meeting.  19 
 20 
It is important to stress that the white papers are very definitely not meant to be interpreted as 21 
providing a definitive plan.  There are two stages of review that will inform the finally agreed 22 
meeting outcome: 23 

1. The white papers have been made publicly available for a comment period through a moderated 24 
blog. 25 

2. At the meeting the approx. 75 experts in attendance will discuss and finesse plans both in breakout 26 
groups and in plenary. Stringent efforts will be made to ensure that public comments are taken into 27 
account to the extent possible. 28 

29 
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Spatial and temporal interpolation of environmental data 30 
Draft white paper for discussion at the international workshop: “Creating surface temperature datasets to 31 
meet 21st Century challenges”, Met Office Hadley Centre, Exeter, UK, 7th-9th September 2010. 32 
Tom Smith, Phil Jones, Elizabeth Kent, Maurice Cox, Noel Cressie, Dick Dee, Richard Smith 33 
1.  Introduction 34 
Environmental data analyzed to a regular spatial and temporal grid is often desired for monitoring and 35 
climate studies.  For example, monitoring of regional to global temperature change and changes in the daily 36 
temperature range and extremes may use analyzed temperatures. We use the term ‘analyses’ in the 37 
broadest sense to encompass any form of transformation to a regular grid (so from simple gridding through 38 
to dynamical reanalyses).  Resolution depends on the period and region of the analysis: typically coarser 39 
analysis grids correspond to longer periods and larger areas. Some analyses are updated in near-real time.   40 
Land near-surface temperature analyses produced by UEA/CRU/MOHC, NOAA/NCDC, and NASA/GISS 41 
have all been used for climate monitoring and studies of historical variations.  Each of these studies employs 42 
different quality control, and different amounts of smoothing, filtering, and interpolation to produce gridded 43 
fields. How well the mean and other features of the temperature are resolved in analyses depends critically 44 
on the analysis methods used.  Here we discuss interpolation analyses and methods, paying regard to the 45 
inevitable uncertainty associated with environmental data, in an attempt to guide the development of 46 
improved analyses.  47 
2.  Characterization of input data uncertainties 48 
Uncertainties associated with the input observations can be a major cause of uncertainty in the analysis grid 49 
values and must be quantified before choosing the interpolation method.  Input uncertainties, reflecting both 50 
systematic (bias) and random effects are required for the implementation of all interpolation techniques.  51 
Establishing measuring instrument traceability is vital as a first step in combining observations from different 52 
sources.  Further uncertainties arise from sampling. Systematic effects, correlated across observations, are 53 
usually considered the most problematic. Examples include temporally and spatially varying biases due to 54 
changing thermometer exposures, urbanization, evaporation from uninsulated buckets used to sample 55 
seawater, and under-catch by rain gauges. Every effort must be made to quantify and adjust for bias in the 56 
analysis input, the adjustment process itself being a further source of uncertainty (Joint Committee for 57 
Guides in Metrology JCGM 100:2008, p5).  Further, the contribution to variability from unbiased random 58 
effects requires quantification. 59 
Metadata describing observational instrumentation and methods are invaluable, but may be unavailable, 60 
particularly for historical observations.  Where adjustments are applied, the relationship between the 61 
observed and analysis input data must be fully documented and the unadjusted data retained or recoverable 62 
through a databank. Evaluation of the residual bias is particularly challenging and may be the largest 63 
component of the uncertainty associated with large-area averages.   64 
Random errors without bias, by definition, average to zero over many observations.  Sources of random 65 
error include inaccuracies in the measurement, transmission and transcription errors, and lack of precision in 66 
an observation, its location or time. For monthly averages over regions containing a number of stations, 67 
there may be enough data to average out most random error (Brohan et al., 2006).  However, analyses on 68 
shorter time and space scales may be much more contaminated by random instrument errors.  Estimation of 69 
the random error of individual observations can be difficult.  That is especially true for historical observations 70 
since information about instruments and methods is often unavailable. In some cases the distinction between 71 
random errors and bias is blurred. For marine data a bias in data from an individual ship can be considered 72 
as a random error if there are sufficient observations from other ships with different biases providing 73 
observations nearby. It is therefore important to account for both the number of observations and the number 74 
of different platforms in such cases to allow properly for error characterization. It should be noted that some 75 
random errors might not average to zero following data transformations or for derived variables such as 76 
surface fluxes that combine several variables in non-linear parameterizations. 77 
Uncertainty due to inadequate sampling becomes more important as smaller regions or shorter periods are 78 
analyzed.  Data sufficient to sample a 5° spatial and one month temporal region may badly under-sample 79 
scales of less than 1° spatial and daily.  Some interpolation techniques fill unsampled regions with values 80 
inferred from statistical or dynamical relationships with values in regions that are more adequately sampled. 81 
Statistical methods to quantify the uncertainty in observations are described by Smith and Cressie (2010).  82 
Typically the uncertainty and covariance structure are modeled using either a marginal statistical model or a 83 
hierarchical statistical model.  Other techniques to evaluate uncertainty include comparisons with high quality 84 
observations, comparisons of observations made using different measurement methods, or the use of 85 
comparisons with model output such as feedback from assimilation into reanalysis. 86 
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3. Interpolation techniques 87 
Analyses to a regular grid require interpolation, averaging and filtering of irregularly spaced and often sparse 88 
point measurements.  Such interpolation may be carried out in a number of ways, and the analyst must 89 
make choices about how to derive the best product for the purpose, given the characteristics of the input 90 
data and the field to be constructed.  Not all methods incorporate uncertainty in a direct manner.  A summary 91 
of methods, focusing on kriging, can be found in Smith and Cressie (2010). Kriging is optimal linear spatial 92 
interpolation and is commonly used to construct gridded environmental analyses, although there are non-93 
linear versions based on the hierarchical statistical model (e.g., Cressie and Wikle, 2011, Ch. 4). In 94 
meteorological and oceanographic applications kriging is often referred to as optimal interpolation. The 95 
underlying assumption of Gaussian linear models is expected to be acceptable for temperature and many 96 
other environmental variables. Precipitation is one exception where the assumption of Gaussian models may 97 
not hold and alternative techniques may be needed (Haylock et al. 2008, Hofstra et al. 2008).  For some 98 
variables, it may be possible to transform the data prior to analysis to produce a new variable with a 99 
Gaussian distribution. Examples where data transformation is desirable include the analysis of wind speed, 100 
rainfall on large space and time scales, or of extreme values of many parameters.  Temporal interpolation 101 
methods have developed largely independently of spatial methods.  Spatio-temporal interpolation methods 102 
are discussed in considerable detail in Cressie and Wikle (2011).  103 
Where sampling is sufficient, the analysis may begin by averaging values within the defined grid cells.  104 
Different averaging methods may be employed, and the analyst will usually try to choose a method that limits 105 
the variance of the average.  These averaged values, which are assumed to be representative of their grid 106 
cells, can then be interpolated to propagate information to surrounding grid cells containing insufficient data 107 
to produce averages.  For greatest accuracy, spatial interpolation may be limited to regions near grid cells 108 
with measurements.  However, sometimes more complete analyses are required, and spatial covariance 109 
estimates may be used to produce interpolation to more distant regions.  In addition, temporal covariance 110 
may be used to aid interpolation of regions that are not consistently sampled (e.g., Wikle and Cressie, 1999). 111 
An alternative to a direct high-resolution analysis is producing analyses in stages.  The basic analysis would 112 
have a coarse scale, perhaps monthly and 5º spatially.  Such an analysis could be supported by the 113 
available data at most locations, beginning in 1900 or earlier.  The next-stage analysis would be higher-114 
resolution corrections to the first analysis.  The higher-resolution corrections would be computed only in 115 
regions where data were sufficient to support it.  In addition, the higher-resolution corrections could be forced 116 
to average to zero over the coarse grid, to keep the lower- and higher-resolution analyses consistent.  Since 117 
the corrections do not involve large-scale variations, simpler statistics could then be used to produce them 118 
compared to a direct high-resolution analysis.  A two-stage analysis of sea surface temperature (SST) similar 119 
to that outlined here is being developed and tested by R. Reynolds (personal communication), and Haylock 120 
et al. (2008) present a three-stage analysis for land temperatures.  Johannesson et al. (2007) describe a 121 
statistical approach of this idea applied to globally extensive total-column-ozone data.   122 
The analysis method used should allow grid-value uncertainties to be evaluated.  These uncertainties are a 123 
consequence of random and systematic data errors, as well as analysis sampling errors.  For a multi-stage 124 
analysis, the uncertainties at each stage of the analysis need to be evaluated, and methods need to be 125 
developed for combining them.  The hierarchical statistical models are particularly adept at this.  The 126 
appropriate errors to consider are a function of scale.  For large-scale variations, errors of fine-resolution 127 
adjustments are not important.  At larger scales, bias in errors may be appreciable, while at fine scales the 128 
effects of sampling may cause most uncertainty.  Where no fine-resolution correction may be produced due 129 
to insufficient sampling, an uncertainty given by the variance of the correction may be assigned.  However, it 130 
should be made clear what the errors represent and the limits of the analysis due to data errors or 131 
insufficient sampling. 132 
The use of basic information about covariance at temporal and spatial scales can be extended to extremely 133 
data-sparse regions and periods by the use of multivariate analyses and dataset reconstruction methods. 134 
Typically a well-sampled period will be analyzed to determine the important modes of variability and the 135 
available data for a data-sparse period projected onto those modes. An example would be the use of sparse 136 
anomalously warm observations in the tropical eastern Pacific to construct the large-scale anomalies 137 
associated with El Niño. Such techniques are widely used in the construction of SST datasets. Relationships 138 
among variables may be used to generate fields of sparsely or unobserved quantities. An example is the use 139 
of relationships among SST, pressure and marine precipitation diagnosed from satellite observations to 140 
estimate fields of marine precipitation using SST and pressure observations for the pre-satellite era (Smith et 141 
al. 2009). 142 
4. Reanalysis 143 
A different approach to generating global fields, known as reanalysis (Trenberth et al. 2010), is through the 144 
synthesis of observations in the context of a physical model,. Reanalysis uses tools and techniques 145 
developed for numerical weather prediction (NWP) to assimilate meteorological observations into multi-146 
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decadal global datasets. These datasets provide an estimate of the atmosphere’s past evolution that 147 
encompasses both observed and unobserved (model-derived) physical parameters. A wide variety of space-148 
based and ground-based observations can be combined in this manner. 149 
Data assimilation techniques used for reanalysis are essentially statistical procedures, in which all available 150 
prior information about data uncertainties (e.g. biases, error covariances) is used to estimate the most likely 151 
state of the atmosphere, given the observations and the laws of physics as approximated by the model. The 152 
role of the model is to impose dynamical and physical constraints on the estimates and to infer information 153 
about unobserved parameters and data voids from the available observations. The equations of motion are 154 
used to interpolate observational information in space, time, and across parameters. Such interpolated fields 155 
provide the ability, for example, to extract wind information from surface-pressure observations, and to 156 
improve rainfall estimates based on satellite measurements of temperature and humidity.  157 
Feedback from the assimilation of observations into reanalyses has proved valuable for quality control and 158 
data homogenization.  Since reanalysis uses and compares observations from different sources in a single 159 
physical framework, it can help to expose data-quality issues. It has been demonstrated that the information 160 
overlap among different instruments can be effectively used in reanalysis to identify and correct biases in 161 
many of the data used (Dee and Uppala 2009). 162 
Reanalysis also has the potential to guide the design of the observing system by providing information to 163 
help ensure that measurements are made in the right places with the right frequency (Trenberth et al. 2002).  164 
Reanalysis has proven to be an important tool for climate research; however, it should be remembered that 165 
errors in reanalysis interpolated fields due to model bias or due to changes in the observing system (which 166 
may not necessarily involve the variable of interest) may make them unsuitable for some applications.  167 
5. Choice of interpolation technique 168 
Each step of an analysis requires making choices to deal with data and physical modeling problems, and 169 
each choice needs to be carefully considered.  For forming analyses within grid cells with observations, 170 
potential problems include random and systematic errors in observations and in models, the irregular 171 
distribution of observations and their density within analysis grid cells.  For interpolation to larger regions, 172 
potential problems include the irregular and sometimes sparse distribution of stations over continents, which 173 
can cause large sampling errors in the analysis.  All of these problems contribute to analysis uncertainty, 174 
which can change from place to place and time to time, and which is often incompletely understood by 175 
climate researchers who use the analyzed products. 176 
Typically, anomalies from the annual cycle are interpolated, since anomalies tend to have larger scales and 177 
be less affected by topography compared to full temperatures. Forming anomalies is a type of data 178 
transformation that requires a base-period average (often referred to as a climatology). The base period may 179 
be a well sampled modern period of in situ data (such as 1961–90) that may be supplemented with satellite-180 
based data.  A separate interpolation should be performed for the absolute temperatures, incorporating 181 
elevation and other factors such as distance from coasts or other bodies of water. Absolute interpolated 182 
temperatures can be developed by adding the absolute to the anomaly-interpolated values. 183 
Besides forming anomalies, it may be desirable to perform other data transformations to analyze 184 
temperature extremes better (particularly important when daily data are considered).  Such transformations 185 
might be helpful for analyzing finer-resolution adjustments.  For example, daily temperature extremes are 186 
often used as measures of climatic variation and their accurate representation in an analysis could be critical 187 
in some applications.  A study would need to evaluate possible transformations and their influence on 188 
analysis of extremes. Various transformations have been tried for daily data (see, e.g., discussion in Haylock 189 
et al. 2008).  Different climates in different parts of the world mean that it is unlikely that there is a single best 190 
transformation that could be universally applied. For daily temperature data, Haylock et al. (2008) found that 191 
the daily anomaly from the monthly mean worked very well. This approach has the advantage of forcing the 192 
daily average of the interpolated data to the monthly average, while still allowing different networks of daily 193 
and monthly data to be used.  194 
The analyses themselves would likely be performed using a statistical model that incorporates covariance 195 
information to interpolate incomplete fields of data.  If a coarse analysis is first performed followed by a finer-196 
resolution analysis, it may be desirable to use different types of analysis for each stage.  A reduced-space 197 
analysis using spatial empirical orthogonal functions or similar functions to define large-scale covariance 198 
may be best for a large-scale analysis.  For a finer-scale analysis, exponential or similar covariance functions 199 
may be better for defining covariances for small-scale corrections.  Although theory may be used to 200 
determine the best method for the analysis of ideal data, the actual available data are far from ideal.  201 
Therefore testing and evaluation of methods is required. 202 
With all interpolation techniques (for temperature and pressure data) it is important to recognize that there 203 
will be a hierarchy of interpolations: anomaly and absolute at the monthly timescale and daily anomalies from 204 
the monthly average at the daily scale. For precipitation, the occurrence/non-occurrence nature of the 205 
variable means that other hierarchical combinations must be made. Simple anomalies do not work as well for 206 
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precipitation and many have used percentage anomalies (as the variance is strongly related to the amount), 207 
but other transformations could be used. Moving to the daily scale involves other considerations. Haylock et 208 
al. (2008) used percentages of the monthly totals (ensuring conformity between the daily and monthly 209 
timescales), but in dry climates/seasons it is necessary not to forget the occurrence aspect. Over-smoothed 210 
interpolated fields will result if this issue is not addressed. The effect is most noticeable with extremes (see 211 
the next section).  212 
The interpolation technique selected should have certain desirable statistical properties (unbiased, efficient, 213 
etc.).  In addition to producing the analyzed grid values, the technique should provide output uncertainties 214 
(uncertainties associated with the grid values).  Because each grid value depends on common information, 215 
the grid values have themselves covariances associated with them.  These output uncertainties and 216 
covariances would be obtained by propagating the input uncertainties and covariances through the 217 
interpolation “model”.  When a multi-stage analysis is used, uncertainties would be propagated through each 218 
stage in turn.  219 
The interpolation technique should be validated to ensure its acceptability in terms of such properties as 220 
fidelity (faithfulness to the raw data) and smoothness (not possessing spurious behavior). Whether or not an 221 
interpolation technique fully employs principles of approximation theory such as filtering, smoothing, and 222 
regularization, validation is important to test the technique 223 
6. Application and examples 224 
Besides near-surface land temperatures, historical analyses of other important climate variables have been 225 
developed, including SST, surface pressure, and precipitation.  Many of these analyses are facilitated by 226 
satellite-based data that can be used to form statistics needed for the analysis of historical periods.  Methods 227 
used for these analyses are often similar, and the knowledge and experience gained from their development 228 
should assist analysis improvements. 229 
Some analyses of climate variables are over both land and ocean using consistent methods.  As noted 230 
above, R. Reynolds is developing a high-resolution SST analysis by producing high-resolution (4 km daily) 231 
corrections for a lower-resolution analysis (25 km daily).  The SST data are not sufficient for analyses of sub-232 
daily variations.  For land temperatures, a similar analysis could be developed, which could then be merged 233 
with the SST to provide a global high-resolution analysis.  It is not clear whether data are sufficient for 234 
analyzing sub-daily land temperatures except in a few well-sampled regions.  The highest resolution to be 235 
analyzed should be evaluated as part of analysis development. 236 
Potentially, atmospheric reanalyses can be used to provide information about sub-daily variations in SST, by 237 
providing estimates of ocean surface winds and solar insulation via cloud, both of which affect the diurnal 238 
cycle in the SST. A more modest application of the same idea would use atmospheric information from 239 
reanalyses to improve estimates of daily SST variability in the pre-satellite era.  240 
Applications for improved temperature analyses include studies for monitoring of changes of the mean and 241 
daily extremes.  To perform these studies adequately, it is important that the extremes be well represented in 242 
the analyses.  Some potential problems in representation of extremes are discussed in Haylock et al. (2008), 243 
who show that analyses may obscure some information on extremes that is present in raw data.  High-244 
resolution analyses or adjustments to lower-resolution analyses should be designed to minimize such 245 
problems.  Figures 1 and 2 (from Haylock et al. 2008, for daily maximum temperature and precipitation data) 246 
illustrate some of the potential problems with interpolation of daily data. The figures show the reduction in the 247 
estimate of extreme values. This reduction is illustrated by calculating values of various extremes from the 248 
interpolated datasets compared to estimating the same extremes from the original station series and then 249 
interpolating these estimates. Across Europe, there is a reduction of ~1 °C for the 10-year return period 250 
extreme and about 75 % for a similar extreme daily precipitation estimate. For both variables, rare extreme 251 
estimates are reduced the most.  252 
With combination of analyses of anomaly datasets from the land and the marine realms, there are decisions 253 
to be made at the boundaries (coasts and islands). The estimated accuracy of monthly averages depends on 254 
the number of samples, but the marked differences in the temporal correlation decay between land and SST 255 
values need to be carefully considered.  It is expected that in the future more consistent approaches to 256 
analysis of land and ocean data will produce global datasets of higher quality than those presently available.  257 
Over the oceans, SST anomaly analyses have been produced using interpolation methods similar to those 258 
that can be applied to near-surface land temperatures.  For example, Smith et al. (2008) discuss a merged 259 
SST and land temperature anomaly analysis, where SST and land analyses were separately produced using 260 
similar statistical analysis methods.  However, the resolution of that analysis is coarse: monthly and 5º 261 
spatially.  To improve the resolution of such an analysis would require higher-density base data for forming 262 
analysis statistics.  Those statistics would need to be analyzed to ensure that they are stable at higher 263 
resolutions.  In addition, the data to be analyzed would need to be sufficiently dense to be used with the 264 
higher-resolution statistics.  Berliner et al. (2000) developed a spatio-temporal statistical 7-month-ahead 265 
forecast, with full uncertainty measures given for the forecast. 266 
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7. Presentation of interpolated data 267 
Interpolated datasets must be properly documented and preferably presented in a self-describing data 268 
format.  Each dataset should be uniquely identifiable through version control.  Documentation should detail 269 
data sources, quality assurance, the interpolation methodology and parameters used, and how the 270 
associated (combined) uncertainties were calculated.  The scales of variability resolved should be indicated 271 
and also when and where the scales change due to changes in the input data.  Documentation should also 272 
explain how the uncertainties should be used to indicate where there might be problems with the raw data or 273 
the model.  Besides the combined uncertainties, the analyses should include different uncertainty 274 
components (associated with random errors, bias, and sampling error) and documentation should explain 275 
how to use each to determine potential problems at different scales and for different applications.  It may be 276 
desirable to include additional information alongside the interpolated data and the associated uncertainties, 277 
such as the covariances, the number of samples and stations or platforms, and data flags. 278 
8. Summary and concluding remarks 279 
The method used to construct interpolated datasets should be chosen based on characteristics of the input 280 
data and the field to be constructed.  Any bias adjustments should be applied before analysis and the 281 
uncertainty due to the bias adjustment evaluated. The quality of the choice of method will impact on the 282 
resulting fields. All aspects of uncertainty should be quantified and estimates of data quality provided 283 
alongside the analyzed field. All sources of uncertainty should be taken into account as far as possible 284 
because of their influence on the reliability of conclusions inferred from the analysis. 285 
It should be recognized that there would never be a single analysis for all uses.  The best interpolation 286 
method depends on the question being asked; for example, kriging does a poor job for determining 287 
temperature extremes.  Thus, links to and comparisons with other analyses should also be available.  Such 288 
comparisons are now carried out for a number of climate variables, such as SST and precipitation, and many 289 
researchers find them useful.  Communications between analysis groups, statisticians, and the greater 290 
climate-study community also should be encouraged, so that the analyst may more clearly know what is 291 
needed to serve that community. 292 
9. Recommendations 293 
• The choice of interpolation technique for a particular application should be guided by a full 294 

characterization of the input observations and the field to be analyzed. No single technique can be 295 
universally applied. It is likely that different techniques will work best for different variables, and it is 296 
likely that these techniques will differ on different time scales. 297 

• Data transformations should be used where appropriate to enhance interpolation skill. In many cases, 298 
the simple transformation of the input data by calculating anomalies from a common base period will 299 
produce improved analyses. In many climate studies, it has been found that separate interpolations of 300 
anomaly and absolute fields (for both temperature and precipitation) work best. 301 

• With all interpolation techniques, it is imperative to derive uncertainties in the analyzed gridded fields, 302 
and it is important to realize that these should additionally take into account components from 303 
observation errors, homogeneity adjustments, biases, and variations in spatial sampling. 304 

• Where fields on different scales are required, interpolation techniques should incorporate a hierarchy of 305 
analysis fields, where the daily interpolated fields should average or sum to monthly interpolated fields.  306 

• Research to develop and implement improved interpolation techniques, including full spatio-temporal 307 
treatments is required to improve analyses.  Developers of interpolated datasets should collaborate with 308 
statisticians to ensure that the best methods are used. 309 

• The methods and data used to produce interpolated fields should be fully documented and guidance on 310 
the suitability of the dataset for particular applications provided. 311 

• Interpolated fields and their associated uncertainties should be validated. 312 
• The development, comparison and assessment of multiple estimates of environmental fields, using 313 

different input data and construction techniques, are essential to understanding and improving analyses. 314 
315 
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10. Figures 353 
 354 

 355 
 356 

 357 
Figure 1:  Areal reduction anomaly (y-axis in ºC) for daily quantiles of maximum temperature from the 358 

median (50 % quantile) up to the 10-year return level. Bars show the variation across all 359 
European stations, marking the median, 25 % and 75 % range (box) and the 5 % and 95 % range 360 
(dashes). (Figure 7 from Haylock et al., 2008.)  The x-axis gives extremes from the median (on 361 
the left) through to the 10-year return period on the right. 362 

 363 

 364 

 365 
 366 
 367 
Figure 2:  10-year return period of daily rainfall extremes (mm, based on the period 1961–2006). The left 368 

panel is based on estimates of this extreme from the gridded database (E-OBS, Haylock et al., 369 
2008) with the right panel gridded interpolation of the same extreme from the original station 370 
precipitation series.  371 


