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STATISTICAL INTERPOLATION METHODS 1 
RICHARD SMITH AND NOEL CRESSIE 2 

Statistical methods of interpolation are all based on assuming that the process being reconstructed 3 
(for the purpose of this report, a temperature field in space or time or both) can be modeled as a random 4 
process. The best-known examples occur in spatial statistics, including the technique widely known as 5 
kriging, and in time series analysis. The process may depend on unknown parameters, which have to be 6 
estimated as part of the interpolation procedure. Once the process is specified, including any estimated 7 
parameters, optimal interpolators are calculated either by finding the best linear interpolator (the linear 8 
combination of known observations that minimizes the mean squared prediction error) or by computing a 9 
given function of the conditional probability distribution of the predicted quantity conditional on the 10 
observations. That function can be determined by appealing to statistical decision theory. 11 

Gaussian processes form a special class of random processes. They are defined by the property 12 
that all joint distributions of the process are multivariate Gaussian. In practice, a process is usually assumed 13 
Gaussian if histograms and other data-plotting techniques suggest a Gaussian distribution. This is usually 14 
considered an acceptable assumption for temperatures and other meteorological variables (e.g., 15 
atmospheric pressure) that have smooth continuous distributions. Precipitation, however, is an exception, 16 
owing to the many zero values and the tendency of precipitation to come in short, sharp bursts of heavy 17 
rainfall interspersed with much lighter or no precipitation. Some quantities may be transformed (e.g., by 18 
taking logarithms) to be Gaussian. 19 

There are two reasons why the assumption of a Gaussian 20 
process is convenient. First, any Gaussian process is completely 21 
specified by its means and its covariances, so we do not need to 22 
worry about higher-order moments. Second, for Gaussian 23 
processes, it can be shown that the best predictor is linear in the 24 
observations, so it suffices to restrict attention to linear predictors. 25 

Kriging is the name commonly given to optimal linear 26 
prediction of a spatial process. Although the origins of the method 27 
go back to signal processing techniques developed by 28 
Kolmogorov and Wiener in the 1940s, it was first developed 29 
systematically by Matheron and by Gandin (who called it optimal 30 
interpolation) in the 1960s. Modern statistical treatments include 31 
the books by Cressie (1993) and Stein (1999). As commonly 32 
applied, it contains the following elements: 33 
a. The method requires that we specify either the covariance or 34 

the variogram function of the process. These do not have to 35 
be spatially stationary, though they are usually assumed so. 36 
There are a number of traditional stationary models that are 37 
widely used, e.g. linear, exponential, Gaussian, spherical, 38 
Matérn. Choice among these models is often based upon 39 
which one best fits the data, though it is also argued that the 40 
Matérn covariance has desirable properties that make it suitable for a wide range of applications (Stein 41 
1999). 42 

b. Standard models for the covariance or variogram assume that the process is stationary (invariant under 43 
translations across space) and isotropic (invariant to rotations). Both assumptions can be tested to some 44 
degree, e.g. for isotropy, it is possible to calculate direction-specific variograms, though in practice, it is 45 
difficult to be certain that stationarity and isotropy assumptions are valid. 46 

c. The stationary covariance or variogram functions have unknown parameters that must be estimated. For 47 
a number of models, the key parameters are the nugget, sill, and range (see diagram). Estimation may 48 
be based on either an ordinary or weighted least squares regression applied to the sample variogram, or 49 
through likelihood-based methods such as maximum likelihood, restricted maximum likelihood (REML 50 
estimation) or Bayesian methods. Variogram methods require less computation and programming effort 51 
and are therefore more convenient to apply in practice, but likelihood-based methods are more efficient 52 
statistically. 53 

d. Ordinary kriging assumes that the mean of the process is unknown but the same at all sampling 54 
locations. Universal kriging is a generalization that allows the mean of the process to be a linear 55 
combination of regression functions. In the context of meteorological interpolation, universal kriging 56 
should be considered when the mean of the process depends on latitude-longitude coordinates or other 57 
measured quantities such as elevation.  58 

e. Once the mean and covariance (or variogram) of a process are specified, kriging consists of fixing a 59 
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prediction location or region, and then calculating the weighted linear combination of observations that 60 
minimizes the mean squared prediction error (MSPE). This is an automated process and several 61 
computer packages are available to do it. 62 

f. The MSPE is often quoted as a measure of the uncertainty of the prediction. It should be used with 63 
caution, as it assumes the process has been specified correctly and ignores the error in estimating any 64 
process parameters such as sill and range. Nevertheless, provided the caveats are made clear, we 65 
would recommend that the MSPE or its square root should be routinely reported when stating the results 66 
of a kriging interpolation. 67 

g. Because kriging typically interpolates among available observations, it is not a good way to represent the 68 
extremes of the process being predicted. For that purpose, it may be necessary to calculate full 69 
conditional distributions, but in that case, the distributional assumptions being made about the process 70 
(such as Gaussianity) are much more critical. 71 

h. Other methods of interpolation, such as thin-plate splines, are often regarded as competitors to kriging. 72 
In fact, the method of thin-plate splines is a special case of kriging, corresponding to a particular 73 
specification of a generalized variogram. Kriging is in principle a more general technique than that of 74 
thin-plate splines, because it allows for different covariance or variogram specifications to be tried out 75 
and compared based on the data, and it allows for the estimation of covariance or variogram 76 
parameters. 77 

Time series analysis is appropriate when observations are taken sequentially in time, usually at 78 
equally spaced time intervals, without a spatial component. The mathematical theory is based on similar 79 
principles to kriging, in particular, both using optimal linear combinations of existing observations as 80 
predictors of unobserved data. However, because of the long history of time series analysis as an 81 
independent discipline, the statistical models used are somewhat different, with particular emphasis being 82 
placed on autoregressive and moving-average (ARMA) models, or alternatively, time series models that use 83 
the Kalman filter (Brockwell and Davis 1991). It is possible to treat time series analysis as a one-dimensional 84 
version of kriging, using models such as the Matérn covariance function, though this is not the way time 85 
series analysis is usually done. 86 

Spatio-temporal analysis is used when data are collected in both space and time. Since the majority 87 
of meteorological datasets indeed have both a spatial and temporal component, it might be thought that this 88 
would be the preferred method of data interpolation in meteorology. In practice, however, statistical methods 89 
that fully respect both the spatial and temporal components are much less developed than those that focus 90 
on one or the other. Therefore, a fully spatio-temporal analysis is rarely used in the practical analysis of 91 
meteorological data. Nevertheless, there have been considerable advances in the statistical theory of spatio-92 
temporal models over the past decade (for example, Wikle and Cressie 1999), and we would view this as an 93 
important area for future research. 94 

 95 
Applications of Spatial Interpolation Methods to Meteorological Data 96 
The two papers by Haylock et al. (2008) and Hofstra et al. (2008) provided an up-to-date review of 97 

how these methods have been applied to actual meteorological data. 98 
Haylock et al. proposed a three-step process for interpolation of temperature fields. In the first step, 99 

monthly mean temperatures were interpolated using thin-plate splines. In the second step, anomalies from 100 
the monthly means were interpolated using kriging. The third step consisted of combining the interpolated 101 
monthly means and anomalies, and calculating an overall uncertainty estimate. 102 

For the first step, they used thin-plate splines based on the ANUSPLIN package described in 103 
Hutchinison (1995), which includes the use of generalized cross-validation to optimize the interpolator 104 
(Craven and Wahba 1979). They interpolated monthly means to a 0.1o grid, the intention being to perform 105 
the initial interpolation on a very fine spatial scale and to aggregate into large grid boxes later. 106 

The second stage of the analysis was to interpolate the anomalies (or residuals) from the monthly 107 
means using kriging. Parameters were estimated by using ordinary least squares fitting of the theoretical 108 
variogram function to the empirical variogram. For the choice of variogram model, the authors considered 109 
five possibilities (Gaussian, exponential, spherical, hole effect, and power), but used the spherical model for 110 
all the temperature series on the grounds of best fit as measured by a chi-squared statistic. They used a 111 
single variogram for the entire time period after establishing that two alternative methods, one based on a 112 
different variogram for each day and the other based on a different variogram for each month, performed 113 
less well in a cross-validation comparison. In interpolating at a given location, they used only stations within 114 
a certain search radius of that location, fixed at 500 km. for temperature and at 450 km. for precipitation, 115 
again using cross-validation to make that determination. They considered the possibility of direction-116 
dependent variograms but concluded that this did not improve the results. They also incorporated elevation 117 
as an external covariate. 118 
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The third stage of the analysis was to combine the monthly and daily interpolations and calculate a 119 
combined measure of uncertainty. Separate uncertainty variances were computed for the monthly and daily 120 
components and combined by adding them together, in effect, assuming that the monthly and daily 121 
interpolations are statistically independent. For the daily kriging variances, the authors did not use the 122 
standard formula for the kriging MSPE but instead they used an alternative “interpolation variance” method 123 
due to Yamamoto (2000). Yamamoto’s method is apparently designed to allow for the possibility of a 124 
process variance (or sill) that varies locally over the region of interpolation, but it might be better to 125 
incorporate this feature directly into the covariance model rather than the rather ad hoc correction proposed 126 
by Yamamoto.  127 

The final step of the uncertainty calculation is to combine the estimates at individual locations into an 128 
estimate of uncertainty for a grid-cell average. For this calculation, it is necessary not only to know the 129 
variance of the prediction at individual locations, but also covariances of the predictors between different 130 
locations. For the latter, it appears that the authors used the fitted variogram model to determine the 131 
correlations between different locations, but there is also a direct formula for the covariance of two kriging 132 
predictors which would be a more precise calculation. 133 

 The description so far applies to the method of interpolating temperature data. It would be 134 
reasonable to apply a similar method for the interpolation of other variables obeying approximately Gaussian 135 
distributions, such as pressure, but different methods are needed for precipitation because of the highly non-136 
normal distributions in that case. Haylock et al. used the method of “indicator kriging” to model the probability 137 
of precipitation. They first reclassified the precipitation variable as binary based on exceedances of a 138 
threshold, taken as 0.5 mm. The binary (0 or 1) variable was interpolated using standard kriging, the 139 
resulting variable being interpreted as a probability of precipitation at each location. Then, locations with a 140 
probability of precipitation below 0.4 were classified as having no rain; for the rest, a kriging method based 141 
on observed rainfall amounts was applied.  142 

Although the “indicator kriging” method appears popular with practitioners, it does not have very 143 
good statistical properties. The choices of thresholds are ad hoc; the method may well produce predicted 144 
probabilities of rainfall that are not between 0 and 1; and since it is not based on any well-defined statistical 145 
model, its properties are impossible to determine (for example, we cannot conduct a simulation because we 146 
don’t know what stochastic process to simulate). Although more complicated to apply, methods for 147 
interpolating rainfall fields that are based on stochastic process models for rainfall, such as Sansó and 148 
Guenni (2004), are in principle much more desirable. 149 

The parallel paper by Hofstra et al. (2008) compared local kriging (LK) and global kriging (GK) with a 150 
number of alternative interpolation techniques. GK is kriging with a single variogram model used for all 151 
stations; LK is kriging restricted to a finite search radius around the location being predicted. The other 152 
methods included two forms of angular distance weighting (a variant on the better known method of inverse 153 
distance weighting; in both IDW and ADW, the interpolation weights at a given location depend only on the 154 
distances of predictor stations from that location); a “natural neighbor interpolation” (which also depends 155 
solely on the geometry of the predictor locations); thin-plate splines in either two or three dimensions, the 156 
third dimension being elevation; and a regression method using latitude, longitude, elevation and distance to 157 
coast as predictors. In the case of precipitation, a method of “conditional interpolation”, based on a 158 
classification of rainfall into synoptic states, was also considered. For each method, a variety of skill scores 159 
was used to assess its predictive ability; these included mean absolute deviation, root mean squared error 160 
and Pearson correlation, besides several others. Although the results varied by skill score and variable being 161 
predicted, the authors concluded that GK was consistently the best of the methods, with the sole exception 162 
of maximum temperature for which three-dimensional thin plate splines performed better. 163 

This paper is interesting because it provides evidence that a kriging approach is overall superior to 164 
its competitors. However, it should be pointed out that apart from the GK versus LK comparison, the paper 165 
largely leaves open the question of what form of kriging method is best. Thus, more refined questions 166 
concerning such aspects as the choice of spatial covariance function (including the possibility of a 167 
nonstationary covariance) or parameter estimation technique are still unresolved at the present time. Also, 168 
LK has an unresolved theoretical issue, that it may not be derived from an underlying positive-definite 169 
covariance structure for the whole process. Finally, the paper did not provide any validation for the various 170 
uncertainty measures.  171 

 172 
Is Kriging an Exact Interpolator?  173 
Kriging was developed by Matheron with the idea that data are observed precisely and one only 174 

needs to interpolate between these observations.  In reality, the data are observed with error and the 175 
scientific goal should be to predict the true process, absent this measurement error.  Consequently, kriging 176 
done properly should not generally be an exact interpolator.  The role of kriging should be to filter out the 177 
measurement error and to make inference on the true (hidden) spatial process, including at locations where 178 
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there are data.  This was not well understood by Matheron and Gandin, and it is not well understood to this 179 
day.  For example, indicator kriging should make inference on the hidden process, not on the process that 180 
includes measurement error.  This would lead to intractable indicator-kriging equations, and for this and 181 
other reasons leads one to conclude that indicator kriging as currently practiced is not a statistically 182 
meaningful interpolation method.  The presence of measurement error requires extra knowledge as to its 183 
magnitude, or equivalently as to its percentage of the total nugget effect.  Matheron’s kriging equations 184 
assume 0%, and the default value in ESRI’s Geostatistical Analyst is 0% (ESRI 2001, p. 169).  That software 185 
does allow the user to input a measurement-error percentage or it will calculate the percentage from multiple 186 
observations at identical locations.  Many public-domain and commercial kriging packages do not handle 187 
measurement-error properly and/or fail when there are multiple observations at individual locations. 188 

There are kriging equations that have been derived in the presence of measurement error (Cressie 189 
1988), but a more general approach is through the hierarchical statistical model (HM).  Under this scheme, 190 
the data and the true process are considered random (as in geostatistics), but their joint distribution is 191 
modeled through a sequence of conditional probabilities, captured by the Data model and the Process 192 
model. In the case where both the Data and Process models are Gaussian, this allows for a quick derivation 193 
of kriging equations in the measurement error case without Monte Carlo simulation (Holland et al. 2000). The 194 
general formulation of HM, however, allows distributions to be anything (e.g., non Gaussian) and predictors 195 
to be nonlinear; see Diggle, Tawn, and Moyeed (1998).  There is an extra component, the Parameter model, 196 
that turns the HM into a Bayesian HM or BHM, but it is not necessary to add this extra component.  Under 197 
the HM approach, optimal statistical interpolators do not have to be linear, so they generalize statistical 198 
interpolation beyond ordinary kriging and universal kriging.  Furthermore, the problem of predicting an 199 
indicator function of the true process can now be formulated and solved in an optimal, statistically coherent 200 
manner.  References for the HM approach are Banerjee, Carlin, and Gelfand (2004) and Cressie and Wikle 201 
(2011, Ch. 4). 202 

 203 
Alternative Methods of Spatial and Spatio-temporal Statistics 204 
This section briefly touches on a number of modern topics in spatial statistics that have potential 205 

relevance for the problem of interpolating meteorological data. 206 
Nonstationary spatial covariances. Originally, kriging methods were developed for mining 207 

applications, where by the nature of the problem, only one sample of data was available. Consequently, in 208 
order to estimate covariances, simplifying assumptions had to be made, the most popular being stationarity 209 
of either the covariance or the variogram function. In meteorology, there is in effect a new random field 210 
observed every day, that provide the replications needed to estimate a general spatial covariance matrix. In 211 
practice, stationarity is often assumed, either for computational convenience, or because of a generic belief 212 
that such an assumption is reasonable. Nevertheless, alternative methods are available. One possibility that 213 
has been mentioned already is to assume a locally varying variance (or sill) while still assuming that the 214 
underlying correlation function is stationary. More refined models, in which both the correlation and variance 215 
functions vary locally, have been proposed by various authors (e.g., Sampson and Guttorp 1992, Higdon et 216 
al. 1998, Fuentes 2002, Paciorek and Schervish 2006). The spatial random effects model of Cressie and 217 
Johannesen (2008) is both nonstationary and computationally advantageous when datasets are large. As 218 
methods for meteorological interpolation become more refined, we would recommend that nonstationary 219 
models be considered as alternatives to standard kriging. 220 

Alternative estimation techniques. Estimating spatial models by variogram techniques has a 221 
number of ad hoc features, e.g. the distance intervals for which the variogram is computed. In the case of 222 
Gaussian processes, it is generally recognized that likelihood-based methods are superior, either traditional 223 
maximum likelihood or the refinement known as restricted maximum likelihood (see Cressie 1993 or Stein 224 
1999). Another issue related to parameter estimation is that the traditional kriging formula for uncertainty 225 
ignores the uncertainty associated with the parameter estimation; this can be corrected either through 226 
asymptotic approximations (e.g. Zimmerman and Cressie 1992) or through Bayesian methods. Bayesian 227 
techniques have in any case become very popular because of the rich possibility of incorporating spatial 228 
statistics into hierarchical models (Banerjee, Carlin and Gelfand 2004). 229 

Improving computation by dimension reduction: fixed rank spatial models. Kriging does not 230 
require stationary covariance functions; the kriging equations rely on knowing the covariance between any 231 
two spatial locations, regardless of whether that function depends only on the relative displacement of the 232 
two locations.  However, kriging does require the (possibly nonstationary) covariance functions to be 233 
positive-definite.  The idea behind fixed-rank models is to express the covariance function in terms of a fixed-234 
rank positive-definite matrix, pre-multiplied by a row vector of spatial basis functions evaluated at the first 235 
spatial location and post-multiplied by a column vector of the same spatial basis functions evaluated at the 236 
second spatial location.  The resulting nonstationary spatial model is positive-definite;  Cressie and 237 
Johannesson (2008) call this the Spatial Random Effects (SRE) model.  The other main advantage of the 238 
SRE model is that it leads to highly efficient computations.  The inverse of the covariance matrix of the data 239 
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is typically the computational bottleneck in kriging.  Cressie and Johannesson (2008) show that for the SRE 240 
model the computations are scalable in sample size, and they are able to produce kriging maps from 241 
hundreds of thousands of (global remote-sensing) data in a matter of seconds of CPU time; they call the 242 
method Fixed Rank Kriging.  The SRE model can be embedded in a BHM, and that leads to enormous 243 
speed-ups that make massive data within the realm of Bayesian posterior analysis.  For more details on 244 
fixed rank representations, see Wikle (2010). 245 

Spatio-temporal methods. So far as we can tell, current methods of interpolating meteorological 246 
data largely ignore the temporal component of variation, in effect treating the temperatures (or their 247 
anomalies from a monthly mean) as independent for each day. Covariance models that include both the 248 
spatial and temporal components have been widely studied (e.g., Christakos 1992, Cressie and Huang 249 
1999, Gneiting 2002, Stein 2005) but have had limited application to large datasets, partly for computational 250 
reasons. Nevertheless, methods are being developed that incorporate both spatial and temporal 251 
dependence and improve greatly on the computational limitations of earlier methods. For example, Cressie, 252 
Shi and Kang (2010) process 120,000 datapoints in a spatio-temporal Kalman filter with computation time on 253 
the order of 2 minutes.  254 

 255 
Summary and Conclusions 256 
Methods of interpolation of meteorological data have advanced considerably in recent years. 257 

Statistical methods based on kriging have been extensively applied, and in at least one major study, proved 258 
superior to most alternatives. New mathematical techniques based on dimension reduction have the 259 
potential for much improvement, including nonstationary models and rapid computing in large datasets. We 260 
also see a number of research questions for future investigation. Methods of assessing uncertainty are still 261 
rather crude and need to be assessed more rigorously. Incorporation of the temporal component in spatial 262 
analysis is an area undergoing considerable activity. Statistical and computational efficiencies are needed 263 
both for kriging and for Bayesian spatial interpolations. 264 

 265 
Technical Appendix 266 
Initially we review basic definitions. Some references where these are explained in more detail 267 

include Cressie (1993), Stein (1999) and Smith (2001). 268 
In general, capital letters such as X,Y,Z denote random variables, on their own or as part of a 269 

random field, e.g. Z(s) may indicate the value of a spatial field Z at a spatial location s, where s is a vector in 270 
2- or higher-dimensional space; in a spatio-temporal setting, we may write Z(s,t) to denote the value of the 271 
field at location s at time t. The letter E generally denotes expectation or mean value.  272 

The variance of a random variable X, often written σ2
X, is defined as E{(X-E(X))2}. The covariance of 273 

two random variables X,Y, often written σXY, is defined as E{(X-E(X))(Y-E(Y))}.  274 
If Z(s) is a spatial random field, its covariance function is C(s1,s2), the covariance of Z at two spatial 275 

locations s1 and s2. If C(s1,s2) depends on s1 and s2 only through their vector difference, s1-s2, and if, in 276 
addition, the mean is constant, then the process is defined to be second-order stationary (often abbreviated 277 
to just stationary). If the covariance depends only on the scalar distance between s1 and s2, so 278 
C(s1,s2)=C0(||s1-s2||) for some scalar function C0, the process is called isotropic. Sometimes, a process that 279 
is both stationary and isotropic is called homogeneous. 280 

An alternative formulation is to use the dispersion function D(s1,s2)=E{(Z(s1)-Z(s2))2}. If 281 
D(s1,s2)=D0(s1-s2) for some function D0, and if the mean is constant, the process is called intrinsically 282 
stationary. If, further, D0(s1-s2)=2γ(||s1-s2||) for some scalar function γ, the process is again called isotropic 283 
and γ is called the semivariogram function (or just the variogram; the prefix “semi” is increasingly ignored). 284 

It’s possible for a process to be intrinsically stationary without being second-order stationary; for 285 
example, the linear variogram, γ(h)=a+bh, does not correspond to any second-order stationary process. 286 

In practice, most variograms tend to an asymptote (known as the sill) as distance h tends to infinity; 287 
the range corresponds to the distance required for the variogram to reach a certain fraction (e.g. 100% or 288 
95%) of the sill; the nugget (when present) represents a discontinuity at the origin; this leads to the 289 
characteristic shape depicted earlier. Examples of variograms of this shape include the spherical 290 
(γ(h)=α+β(1.5(t/R)-0.5(t/R)3) for 0<t<R, γ(h)=α+β for t>R), exponential (γ(h)=α+β(1-exp(-t/R))) and Gaussian 291 
(γ(h)=α+β(1-exp(-t2/R2))); in each case the range is some multiple of R, α is the nugget and α+β the sill. The 292 
Matérn model is especially widely used because of its mathematical flexibility (Stein 1999); it is usually 293 
expressed in terms of its covariance function, given as C0(h)=(2h√ν/R)ν Kν(2h√ν/R)/2ν-1Γ(ν). Here Γ(ν) 294 
denotes the gamma function while Kν is the modified Bessel function of the third kind of order ν; here ν is an 295 
adjustable shape parameter. Note that as given here, there is no separate nugget parameter, though it is 296 
easy also to include a nugget in the Matérn covariance function. 297 

In practice, all of these models must be estimated from observational data. The most widely used 298 
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estimator of the variogram is the method of moments (Journel and Huijbregts 1978) – pairs of spatial 299 
locations (s1,s2) are binned according to the distance ||s1-s2||, then the values of (Z(s1)-Z(s2))2 are averaged 300 
within each bin. The robust variogram estimator (Cressie and Hawkins 1980) uses an intermediate fourth-301 
root transformation and is less sensitive to outliers. 302 

To estimate the parameters of a variogram model, Journel and Huijbregts (1978) recommended 303 
using nonlinear least squares regression to the estimated variogram function. An improvement is the 304 
approximate weighted least squares method of Cressie (1985): if γ(h) is estimated by γ^(h) for a series of 305 
distances h1,…,hm (typically corresponding to a binned estimator), and if γ(h) is represented by a parametric 306 
function γ(h;θ) say, where θ is the vector of unknown parameters, then the estimator is derived by minimizing 307 
the weighted least squares function, ∑ Nj(γ^(hj)/γ(hj;θ)-1)2,  where Nj is the number of pairs of locations in the 308 
jth bin centered on hj. 309 

The main alternative approach to estimation is to assume the process is Gaussian and work directly 310 
with the likelihood function. Suppose we have a vector of observations Z consisting of Z(si), i=1,…,n, where 311 
n is the number of spatial locations. Suppose Z has mean Xβ (X a known matrix of covariates, β an unknown 312 
vector of linear regression coefficients) and covariance matrix Σ(θ). This formulation corresponds to the slight 313 
generalization of ordinary kriging known as universal kriging, whereby an assumed constant unknown mean 314 
μ is replaced by a vector of unknown regression coefficients β. Note, however, that ordinary kriging may be 315 
recovered by replacing Xβ with 1μ (1 a vector of n ones, μ a scalar). 316 

For a given set of values of the covariance parameters θ, we define the generalized least squares 317 
regression estimator, β^=(XT Σ(θ)-1 X)-1 (XT Σ(θ)-1 Z), and the generalized residual sum of squares G2(θ)=(Z-318 
Xβ^)TΣ(θ)-1(Z-Xβ^). The maximum likelihood estimator (MLE) chooses θ to minimize the negative log 319 
likelihood function ½[n log(2π) + G2(θ) + log|Σ(θ)|]. Alternatively, the restricted maximum likelihood estimator 320 
(REMLE) minimizes ½[(n-q) log(2π) + G2(θ) + log|Σ(θ)| + log|XTΣ(θ)-1X| - log|XTX|], where q is the number of 321 
linearly independent regressors. These estimation procedures have been implemented in a number of 322 
statistical computing packages, for instance fields and geoR which are both downloadable packages for the 323 
R program (R Core Development Team 2010). REML estimation is usually considered superior to the usual 324 
maximum likelihood procedure; for instance, the REMLE is approximately unbiased whereas the MLE often 325 
exhibits considerable bias. A third possibility is to implement a fully Bayesian procedure, which is 326 
computationally feasible thanks to modern methods of Monte Carlo simulation, such as the Metropolis-327 
Hastings algorithm (Gelman et al. 2003, Banerjee et al. 2004). 328 

Next we turn to kriging, which is more precisely described as optimal unbiased linear prediction. 329 
Suppose, as above, Z is a vector of observations from a spatial process with mean Xβ and covariance matrix 330 
Σ. Although Σ will still (in most cases) depend on some unknown parameter θ, in the traditional formulation of 331 
kriging, θ is treated as known, so we do not indicate it explicitly. Suppose we want to predict a scalar z0 332 
which has mean x0

Tβ (x0 known, β the same as previously) and variance σ0
2. We also assume the vector of 333 

covariances between Z and z0 is written as ρ. A few comments about this formulation: 334 
1. Usually z0 is the value of the random field at a single unobserved location, but it may also be the 335 

average (i.e. spatial mean) of the random field over some region. Usually, predicting such a spatial mean in 336 
a single step is simpler (especially for the MSPE calculation) than calculating the kriging predictor point by 337 
point and then averaging. 338 

2. Ordinary kriging, where both the observed and predicted quantities have a single unknown mean 339 
μ, is a special case of this: simply replace X with 1. 340 

3. There is no explicit assumption of a Gaussian process here, though this is often assumed for 341 
convenience. 342 

The kriging problem is to find a predictor of the form, z0^=λTZ, that minimizes the mean squared 343 
prediction error (MSPE), given by E{(z0^-z0)

2}, under the unbiasedness constraint λTX=x0
T. The solution is 344 

λ= Σ-1ρ + Σ-1 X(XTΣ-1X)-1(x0-XTΣ-1ρ) 345 
and the resulting mean squared prediction error is 346 

MSPE= σ0
2 - ρ TΣ-1ρ + (x0-XTΣ-1 ρ)T(XTΣ-1X)-1(x0-XTΣ-1ρ). 347 

Two further comments about these formulas: 348 
4. Nowhere in our discussion of maximum likelihood estimation and kriging did we assume that the 349 

covariance matrix Σ arises from a stationary (or isotropic) process. That is an assumption often made for 350 
convenience, because of the existence of a number of variogram or covariance models that happen to be 351 
stationary and isotropic, but it is in no way required for kriging. 352 

5. The formula we have given for MSPE is the correct formula if the model is correctly specified. 353 
However, like all mathematical formulas, it is valid only if the assumptions that have been made (in this case, 354 
on the means and covariances of the process) are correct. In cases where it has been found that the formula 355 
does not work well in practice, this is evidence of model misspecification; our advice would be to look for 356 
alternative models that better describe the data, rather than make ad hoc adjustments to the formulas, as in 357 
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Yamamoto (2000). 358 
 359 
Spatial Random Effects (SRE) Model. A very general model for a nonstationary spatial model is of 360 

the form, Z=Y+ε, where Z is a vector of observations and ε is a vector of measurement errors with mean 0 361 
and covariance matrix σ0

2 V (V diagonal). Here Y is a sample of n locations from a process model of form 362 
Y(s) = T(s)T α + U(s)T η + ξ(s) 363 

where T(s)T α are fixed effects (T(s) a known vector of covariates, α an unknown parameter vector), U(s)T η 364 
are random effects (U(s) a known r-dimensional vector of spatial basis functions for each s, η an r-365 
dimensional random vector with mean 0 and covariance matrix Krxr) and ξ(s) is a white-noise process (mean 366 
0, uncorrelated, common variance τ2) that represents micro-spatial variation. Here U(s)= (U1(s),…,Ur(s)) T 367 
represent r basis functions that could arise, for instance, from a Fourier or wavelet representation, though 368 
there is no requirement that the basis functions be orthogonal.  369 

For such a process, we have the covariance function, 370 
C(s1,s2) = U(s1) TK U(s2)+ τ2 I(s1=s2), 371 

which is non-negative definite and nonstationary; the parameters to be estimated are K and τ2. 372 
 373 

Spatial Fixed Rank Kriging (FRK). The covariance matrix of Z, which we write as Σ, is of the form 374 
UKUT+D, where U is the matrix formed by the vectors U(s1),…,U(sn) and D= τ2In+ σ0

2V (V is a diagonal 375 
matrix and In is the nxn identity matrix). The main computational difficulty in kriging is the calculation of the 376 
inverse matrix Σ-1 when n is large. The problem may, however, be much simplified by the application of the 377 
Sherman-Morrison-Woodbury identity: for any nxr matrix P, this gives 378 

(In + PKPT)-1 = In – P(K+ PTP)-1PT. 379 
Hence 380 
Σ-1= D-1 – D-1U (K-1 + UTD-1U)-1 UTD-1, 381 

which involves inversion of the fixed rank matrix Krxr and the diagonal matrix  Dnxn. 382 
Substituting this into the kriging equations yields the kriging map }:)(ˆ{ 00 DY ∈ss and the 383 

associated kriging standard error map  {σk(s0) : s0 ∈ D}, where D is the domain of interest (Cressie and 384 
Johannesson 2008). 385 

The covariance parameters can be estimated using a binned method-of-moments and then 386 
minimizing the Frobenius norm between the empirical (binned method-of-moments) covariance and the 387 
theoretical covariance implied by the SRE model (Cressie and Johannesson 2008). 388 
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