Is it good enough?

Benchmarking homogenisation algorithms and cross-cutting with efforts for land observations

Kate Willett and the Benchmarking and Assessment Working Group
Outline

1) What and Why?
2) The Benchmarking and Assessment Working Group
3) Creating Artificial Data with a Known 'Truth'
4) Creating 'Error Models' Covering all Known Real-world Nasties
5) Assessing the Benchmarks
What and Why?
What is Benchmarking?
What is Benchmarking?
What is Benchmarking?
What is Benchmarking?

No one-size-fits-all approach
What is Benchmarking?

METHODS
What is Benchmarking?

METHODS

A B C

© Crown copyright Met Office
What is Benchmarking?

METHODS

A B C

TRUTH?
What is Benchmarking?

X

1

2

3

TRUTH
What is Benchmarking?

METHODS

1 2 3

TRUTH

© Crown copyright Met Office
What is Benchmarking?

[Diagram showing a world with X1, X2, X3, and labels A1, A2, B1, B2, B3, C1, C2, C3.]

METHODS
What is Benchmarking?

METHODS

A

X

1

A

2

B

X

X

3

C

TRUTH

© Crown copyright Met Office
So why Benchmark?

1) Quantification of methodological uncertainty:

The 'true' climate, free from all random and systematic errors is unknown – therefore we cannot know how close we are to absolute 'truth'.

Understanding the strengths and weaknesses of a data-product methodology against known 'errors' and 'truths' in artificial but realistic data can provide a confidence measure of likely proximity to absolute 'truth' when applied to real data.
So why Benchmark?

2) Informed intercomparison of data-products: Comparing multiple independent products builds confidence in common features – understanding how and why products differ can provide further confidence.
So why Benchmark?

3) Aid advancement of methodologies:

Release of the known 'truth' for the error models will allow data-product creators to test methodologies, understand where weaknesses are and trial improvements.

Official benchmarking assessments will be blind to avoid over-tuning but the 'truth' will eventually be released for each benchmarking cycle.

ACMANT
MISH MASH
SNHT
QUANTILE QUANTILE
PMT
MDL
PAIRWISE
CAUSINUS-MESTRE
The Benchmarking and Assessment Working Group
The Benchmarking and Assessment Working Group

Purpose:
To facilitate use of a robust, independent and useful common benchmarking and assessment system for temperature data-product creation methodologies to aid product intercomparison and uncertainty quantification

BLOGSPOT:
http://surftempbenchmarking.blogspot.com
WEBSITE:
http://www.surfacetemperatures.org/benchmarking-and-assessment-working-group

REVIEW, DEFINE, CREATE, CO-ORDINATE

Kate Willett - Chair (UKMO Hadley Centre, UK), Claude Williams (NCDC, USA), Ian Jolliffe (Exeter Climate Systems, Uni. of Exeter, UK), Robert Lund (Dep. Mathematical Sciences, Clemson Uni., USA), Lisa Alexander (Climate Change Research Centre, UNSW, Australia), Olivier Mestre (Meteo France, France), Stefan Bronniman (University of Bern, Switzerland), Lucie A. Vincent (Climate Research Division, Environment Canada), Aiguo Dai (Climate and Global Dynamics Division, NCAR, USA), Steve Easterbrook (Dep. Computer Science, University of Toronto, Canada), Chris Wikle (Dep. Statistics, University of Missouri, USA), Victor Venema (Meteorologisches Institut, University of Bonn, Germany)
Creating Artificial but Realistic Data with Known 'Truth'
The Artificial Data Must Include Real-World Noise

\[X_{t,l} = S_{t,l} + T_{t,l} + \varepsilon_{t,l} \]

\(X = \) Artificial data-point (at TIME \(t \) /LOCATION \(l \))

\(S = \) seasonal cycles

\(T = \) trends (background change, local effects, ENSO, NAO, Volcanoes, Solar Cycles etc.)

\(\varepsilon = \) random error (recording error, instrument error etc)

With some realistic temporal autocorrelation, spatial covariance structure, data-point characteristics (mean, variance, inter-point correlations)
Downscaling from GCMs to Create Artificial Data-points

- GCM gridbox timeseries
- adjusted mean
- adjusted variance
- missing data applied

Realistic spatial covariance
Creating 'Error models' Covering all Known Real-world Nasties
The Artificial Data Must Include Real-World Noise

\[
X_{t,l} = S_{t,l} + T_{t,l} + \xi_{t,l} + H_{t,l}
\]

- \(X\) = Artificial data-point (at TIME \(t\) /LOCATION \(l\))
- \(S\) = seasonal cycles
- \(T\) = trends (background change, local effects, ENSO, NAO, Volcanoes, Solar Cycles etc.)
- \(\xi\) = random error (recording error, instrument error etc)
- \(H\) = inhomogeneity (abrupt, gradual, seasonal, clustered, variance changes etc. - physically governed by radiation and windspeed effects on the specified change)

With some realistic temporal autocorrelation, spatial covariance structure, data-point characteristics (mean, variance, inter-point correlations)
A Suite of Error Models Should Answer A Selection of Big Questions:

Does a background trend (not necessarily linear!) affect inhomogeneity detection/adjustment?

Does metadata provision (null and positive)...?

Does prevalence of many small breaks...?

Does a sign bias...?

Does location of inhomogeneity near record end points...?
Error Worlds

CONSOLIDATED MASTER DATABASE

World 1: no breaks

World 2: few large breaks – no trend

World 3: many small breaks – no trend

World 4: few large breaks – with background trend

World 5: many small breaks – with background trend

etc.

Example error models applied to stations
Assessing the Benchmarks
Hit rates and false alarm rates:

Contingency tables:

<table>
<thead>
<tr>
<th>Changepoint Detected (within +/- 3 months)</th>
<th>Changepoint Not Detected (within +/- 3 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>42 (potential detections given period of data)</td>
</tr>
</tbody>
</table>

- Percent Correct Hit Rate: 90%
- Heidke Skill Score = 61%
- Probability of Detection hit rate = 71%
- False Alarm Rate = 37%
Assessment

Hit rates and false alarm rates:

ROC plots:
Assessment

Closeness to world Truth:

RMSE for:
- Climatology
- Variance
- Trends
Are such techniques useful within the marine community?
My Pseudo-Worlds and Error Models
Creating the 'truth'
Creating the 'truth'
Creating the 'nastiness'
Creating the 'nastiness'
Help!
Real World Nastiness to Include?
Spatial covariance, white noise random error, ENSO etc.
Changepoint Structure

Amount, type, physical characteristics, clustered, metadata, size...
Usefulness of Assessment

Ability to detect changepoints
Ability to adjust timeseries correctly
Ability to cope with/without metadata
etc.
Causes of Inhomogeneity in Marine Data

• Change to predominant observation type over a region (ship, buoy, fixed platform etc.)

• Change to predominant observing instrument type

• Change to observing practices (observing time, rounding practices etc.)

• Change in observation height (bigger ships over time)

• Change in observation density

• Blended Land/Ocean products may see a shift from Land obs to Ocean obs (or vice versa) over time